

TETRAHEDRON: ASYMMETRY

Tetrahedron: Asymmetry 14 (2003) 641-644

A chemoenzymatic route to quasisymmetrical chiral sulfoxides and their phospholipid derivatives

Derek Hodgson and Peter H. Buist*

Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada Received 2 December 2002; accepted 8 January 2003

Abstract—The chain-length dependence of yeast Δ^9 desaturase-mediated sulfoxidation was examined. Methyl (R)-9-thiahexade-canoate S-oxide (95% ee) and the corresponding phosphatidylcholine diester was synthesized. © 2003 Elsevier Science Ltd. All rights reserved.

It has been shown previously that fatty acid desaturases¹ can function as highly enantioselective sulfoxidases if the thia substrate analogues bear a sulfur atom corresponding to the site at which the parent dehydrogenation reaction is initiated.^{2,3} The stereochemistry of the oxo transfer matches the known preference for pro R hydrogen removal⁴ in the desaturation process (Scheme 1). Little overoxidation to the sulfone has been observed in these experiments. Given the continued interest in functionalized lipids and the effect of mid-chain stereochemistry on self assembly,5 we wished to explore the feasibility of synthesizing chiral, non-racemic, sulfoxy fatty acids on a preparative scale. Herein, we report the results of an investigation in which we determine how the efficiency of yeast Δ^9 desaturase-mediated sulfoxidation varies as a function of substrate chain length. A model synthesis of a phospholipid bearing enantiomerically enriched, sulfoxycontaining side chains is also reported.

A homologous series of 9-thiafatty acids (1a–k) ranging in chain length from C-10 to C-20 was synthesized by alkylation of 8-thiooctanoic acid with the appropriate alkyl bromide using previously published procedures.⁶ Sulfoxide reference standards (*R*,*S*)-2a–k were prepared by oxidation of the corresponding sulfide methyl ester using one equivalent of *meta*-chloroperbenzoic acid (MCPBA).⁷ The analytical data (¹H and ¹³C NMR, MS) of the substrates and sulfoxy derivatives were in accord with previous structural assignments.^{2,7}

1a-k, a: R = methyl, b: R = ethyl... k: R = undecyl

2a-k, a: R = methyl, b: R = ethyl.... k: R = undecyl

Scheme 1. Relationship between Δ^9 desaturation of long chain fatty acyl derivatives and the corresponding sulfoxidation of thia analogues (X=Coenzyme A or phospholipid ester).

^{*} Corresponding author. Tel.: 520-2600, ext. 3643; e-mail: pbuist@ccs.carleton.ca

Each substrate methyl ester (\sim 25 mg, ethanol) was incubated separately with actively growing cultures (200 mL) of wild type *S. cerevisiae* #5288C for 24 h. After centrifugation of the yeast cells (6000 rpm, 20 min), the supernatant was acidified to pH 3 and extracted with CHCl₃ (4×100 mL). The procedures used have been outlined in an earlier account.² The combined extracts were dried over Na₂SO₄, evaporated to constant weight and the amount of sulfoxide produced in each case quantitated by ¹H NMR analysis. The latter was accomplished by integration of the α -sulfinyl resonances at δ 2.55–2.70 ppm relative to an internal standard – methyl 2-methoxy-2-phenylethanoate (singlet, δ 4.76 ppm). The conversion of sulfide to sulfoxide for each substrate is compared in Table 1.

Inspection of the data in Table 1 reveals that useful levels of desaturase-catalyzed 9-sulfoxidation were observed for substrates with chain lengths ranging from C-14 to C-19. These results correlate well with an earlier in vitro study in which the chain length dependence of maximal enzyme velocity (Vmax) for a closely related, hepatic Δ^9 desaturase was examined (Table 1).8 We have also observed similar trends for yeast-mediated Δ^9 -desaturation of a homologous series of 5-thia fatty acids (unpublished results). The very high yield observed for sulfoxidation of the C-15 substrate is somewhat surprising; a more detailed analysis of structure/activity relationships must await the results of ongoing efforts to determine the structure of the yeast Δ^9 desaturase.

Having defined the boundaries of sulfoxidase activity, we chose to scale up the production of 9-thiahexade-canoate S-oxide 2g in order to facilitate potential comparison with naturally occurring, non-thia, C-16 (palmitoyl)-containing phospholipid systems. Thus methyl 9-thiahexadecanoate (1g, 500 mg) was incubated with S. cerevisiae in batch culture under conditions similar to that used in the trial experiment. Extracts of the medium were treated with diazomethane/ether (CAUTION: diazomethane is toxic and explosive) and the crude methyl 9-thia hexadecanoate S-oxide so

obtained was purified by flash chromatography (SiO₂, 100% EtOAc) to yield ~200 mg of the desired product (40% yield) as a white solid. The analytical data for this material (1 H and 13 C NMR, IR, MS and HRMS (EI): m/z calcd for C₁₆H₃₁O₂S (M⁺–OH, base peak) 287.2045; found: 287.2044) were identical to those of the reference standard prepared by MCPBA oxidation of the parent sulfide.

The stereochemical analysis of biosynthetic 2g was achieved via application of the methodology developed² to analyze the corresponding C-18 sulfoxy analogue 2i. This approach involves the use of (S)-(+)- α methoxyphenylacetic acid (MPAA) as a chiral NMR shift reagent. Application of a Pirkle-type complexation model, which has been validated by synthesis of chiral reference standards,^{2,9} allows prediction of the absolute configuration at the sulfinyl centre via the observation of differential upfield shielding effects (Fig. 1). Due to the complexity of the ¹H NMR spectrum in the sulfoxide region of 2g, we elected to use the two α-sulfoxy ¹³C signals as our reporter resonances.[†] As depicted in Fig. 2, our analysis clearly shows that the yeast-derived product 2g was highly enriched (~95% ee) in the R-enantiomer—a result which is consistent with a diverted Δ^9 desaturase-catalyzed process (Scheme 1).

The ready availability of long chain chiral sulfoxides paves the way for an examination of how asymmetry

Figure 1. Binding model for the interaction of (S)-MPAA with the two enantiomers of 2g.

Table 1. Effect of substrate chain length on the efficiency of baker's yeast-mediated sulfoxidation of 9-thia fatty acid methyl esters

Substrate	1a	1b	1 c	1d 13	1e	1f	1g	1h	1i	1j	1k
Chain length	10	11	12		14	15	16	17	18	19	20
Conversion (%) ^a	<5	<5	<5	< 5	19	90	40	35	11 ^b	30	<5
Vmax ^c	<1	ND ^d	7	50	69	ND	86	103	100	103	<1

^a % Conversion was evaluated by quantation of the sulfoxy product found in the supernatant. Previous experiments^{2,7} have shown that very little sulfoxide is found in the cells. The sulfoxide is produced as the free acid via a yeast-mediated hydrolysis reaction.

^b This value is in good agreement with previously measured² conversions (8, 9%) of methyl 9-thiaoctadecanoate 2i.

^c Relative maximal velocity of Δ^9 desaturation of *n*-alkanoate derivatives.⁸

^d ND=not determined.

[†] The ¹³C chemical shifts for C-8 (δ 52.40 ppm) and C-10 (δ 52.53 ppm) of **2g** were assigned based on the similarity of these values with those previously attributed² to the corresponding carbons of the C-18 analogue **2i**: C-8 (δ 52.42 ppm) and C-10 (δ 52.56 ppm). The latter resonances were unambiguously assigned via regiospecific deuterium labeling.²

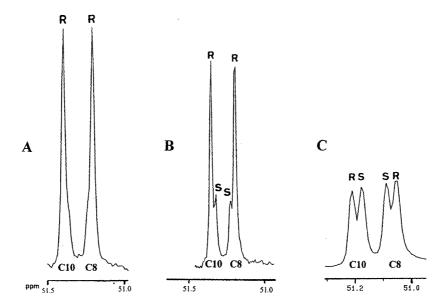


Figure 2. Effect of addition of 3 equiv. of (*S*)-MPAA on 13 C NMR (100.6 MHz) resonances due to the α-sulfinyl carbons of (**A**) biosynthetic methyl 9-thiahexadecanoate S-oxide (95% ee); (**B**) a 2:1 mixture of biosynthetic methyl 9-thiahexadecanoate S-oxide (95% ee) with corresponding racemate (resultant 63% ee, calculated = 63% ee, observed); (**C**) racemic methyl 9-thiahexadecanoate S-oxide.

Scheme 2. Synthesis of the phosphatidyl choline ester of (R)-9-thiahexadecanoate S-oxide.

affects self assembly. Since such studies are frequently carried out using esters of phosphatidyl choline, biosynthetic 2g was hydrolyzed (2N KOH/EtOH) and the resultant acid coupled with l-α-glycerophosphorylcholine under standard anhydrous conditions (CHCl₃, DCC, DMAP catalysis).¹¹ The desired phospholipid **3** was obtained as a white solid¹² in 46% yield after purification by gradient flash chromatography (10% $MeOH/CHCl_3$ (1:10) $H_2O/MeOH/CHCl_3$ (4:35:65) (Scheme 2). That the stereochemical purity of the sulfinyl centers had not decreased measurably during the hydrolysis/coupling sequence was demonstrated by ¹³C NMR analysis (CDCl₃, 6 equiv. of (S)-MPAA) as discussed above. Preliminary Langmuir film studies of 3, and the corresponding material synthesized from racemic 2g suggest that a 'homochiral' lipid exhibits improved packing characteristics relative to a mixture of diastereomers. A more detailed analysis using DSC (differential scanning calorimetry) measurements is in progress.

In summary, we have demonstrated the feasibility of generating a series of novel, chiral sulfoxide-containing phospholipids by a relatively straightforward combination of enzymatic and chemical synthesis. If so desired, the position of the sulfoxy function along the hydrocar-

bon chain can be altered by taking advantage of the wide range of naturally occurring desaturase regioselectivities¹ and the ease with such enzymes can be expressed in microbial hosts.

Acknowledgements

We are grateful to Professor Bruce Lennox (McGill University) for pointing out the possible applications of chiral sulfoxy-containing phospholipids and to Joy Klass (McGill University) for carrying out the preliminary Langmuir film studies.

References

- Behrouzian, B.; Buist, P. H. Curr. Opin. Chem. Biol. 2002, 6, 577.
- Buist, P. H.; Marecak, D. M. J. Am. Chem. Soc. 1992, 114, 5073.
- 3. Fauconnot, L.; Buist, P. H. J. Org. Chem. 2001, 66, 1210.
- (a) Schroepfer, G. J.; Bloch, K. J. Biol. Chem. 1965, 240,
 (b) Morris, L. J.; Harris, R. V.; Kelly, W.; James, A.

- T. *Biochem. J.* **1968**, *109*, 673; (c) Behrouzian, B.; Savile, C. K.; Dawson, B.; Buist, P. H.; Shanklin, J. *J. Am. Chem. Soc.* **2002**, *124*, 3277.
- (a) Georges, C.; Lewis, T. J.; Llewellyn, P.; Salvagno, S.; Taylor, D. M.; Stirling, C. J. M. J. Chem. Soc., Faraday Trans. 1 1988, 84, 1531; (b) Ulman, A. Chem. Rev. 1996, 96, 1533; (c) Tavasli, M.; O'Hagan, D.; Pearson, C.; Petty, M. C. Chem. Commun. 2002, 122.
- Buist, P. H.; Dallmann, H. G.; Rymerson, R. R.; Seigel, P. M.; Skala, P. Tetrahedron Lett. 1987, 28, 857.
- Buist, P. H.; Dallmann, H. G.; Rymerson, R. R.; Seigel, P. M.; Skala, P. Tetrahedron Lett. 1988, 29, 435.
- 8. Enoch, H. G.; Catala, A.; Strittmatter, P. J. Biol. Chem. 1976, 251, 5095.
- 9. Buist, P. H.; Marecak, D.; Holland, H. L.; Brown, F. M. *Tetrahedron: Asymmetry* **1995**, *6*, 7.
- Pirkle, W. H.; Beare, S. D.; Muntz, R. L. Tetrahedron Lett. 1974, 1, 2295.
- Menger, F. M.; Wood, M. G., Jr.; Richardson, S.; Zhou, Q.; Elrington, A. R.; Sherrod, M. J. J. Am. Chem. Soc. 1998, 110, 6797.
- 12. 1,2-(9'R,9''R)-Di-9-thiapalmitoyl-S-oxide-sn-glycero-3phosphatidylcholine: R_f 0.22 (SiO₂, H₂O/MeOH/CHCl₃ (4:35:65)); ¹H NMR $(400 \text{ MHz}; \text{CDCl}_3) \delta 0.90 \text{ (t, } J 6.8 \text{ Hz,}$ 6H, $2\times RCH_3$) 1.30–1.44 (m, 28H, methylene envelope) 1.60 (m, 4H, $2 \times O(O)CCH_2CH_2$) 1.76 (m, 8H, $2 \times$ $CH_2CH_2SOCH_2CH_2$) 2.31 (t, J 7.5 Hz, 4H, (O(O)CC H_2) 2.67 (m, 8H, $2 \times CH_2SOCH_2$), 3.37 (s, 9H, $N(CH_3)_3$), 3.81 $(m, 2H, (CH_3)_3NCH_2), 3.97 (m, 2H, OPO_2OCH_2CH), 4.14$ $(dd, J 12.0 Hz, J 7.2 Hz, 1H, HC-CH_aH_bO(O)C), 4.34 (m,$ 2H, $(CH_3)_3NCH_2CH_2O_1$, δ 4.41 (dd, 2J 12.0 Hz, 3J 2.5 Hz, 1H, HCCH_aH_b)O(O)C), 5.21 (m, 1H, OPO₂OCH₂CH); ¹³C NMR (100.6 MHz) δ 14.04 (R-CH₃), 22.56, 22.62, 22.64, 24.69, 24.73, 28.65, 28.74, 28.79, 28.85, 28.88, 31.55, 33.97 (C(O)O CH_2), 34.17 (C(O)O CH_2), 52.33 (2× CH₂SO(CH₂)₆CH₃), 52.54 (2×SOCH₂(CH₂)₅CH₃), 54.56 $((H_3C)_3NR)$, 59.25 (d, ${}^2J_{CP}$ 4.9 Hz, $(CH_3)_3N(CH_2)CH_2O$ - PO_2O), 62.95 (OHCCH₂OC(O), 63.40 (d, ${}^2J_{CP}$ 5.2 Hz, $(OPO_2-OCH_2R))$, 66.49 (d, $^3J_{CP}$ 6.0 Hz, $(CH_3)_3NCH_2-$ CH₂OPO₂), 70.61 (d, ³J_{CP} 7.6 Hz, (OPO₂O-CH₂CHO), 173.07 (RC(O)OR), 173.42 (RC(O)OR); MS (electrospray) m/z 825 (MNa⁺), 802 (MH⁺).